## Solutions: Preview

- In the beaker 93.6g of Cu(NO<sub>3</sub>)<sub>2</sub> is being dissolved in 100mL of water. Draw a rough sketch of the solution.
- 2. What is the molarity of the  $Cu(NO_3)_2$ ?  $95.65 \cdot \frac{1}{187.55} = 0.5 \text{ mul}$  0.1L = 5 M



- 3. What would be the actual number of moles of NO<sub>3</sub>-1 ions floating in the solution?  $5 \text{ mel} \frac{2 \text{ Nos}}{6 \text{ Cu(Nb)}} = 70 \text{ meNb}.$ 4. What is the molarity of the  $NO_3^{-1}$ ?
- 14/1= 10 M



- 5. If you keep adding more and more  $Cu(NO_3)_{2_a}$  to the solvent the
- 6. What is the only factor that would allow you to actually add more solute per solvent? 1 Temp
- 7. In the second chart sketch the relationship between a gas dissolving (molarity) and temperature. Label the axis.



8. In the chart given, sketch out the relationship between Concentration and % T of light. Label the axis.

( of



- If another 100 ml of .5M Mg(NO<sub>3</sub>) to the beaker above.
  - a. Write out the molecular equation for this process.
  - b. Draw a picture of the aftermath.
  - c. What is the concentration of the Mg<sup>2+</sup> ion.





My(N'3)2 - M5